369 research outputs found

    Photovoltaic panel recycling: from type-selective processes to flexible apparatus for simultaneous treatment of different types.

    Get PDF
    Photovoltaic (PV) technology for renewable energy utilization is constantly growing throughout the world. This widespread application is going to determine the disposal of large amounts of wastes (as end of life panels): only in Europe about 500,000 ton/year are expected in the next 20 years. European Union issued the Guideline 2012/19/EU in order to fix rules about end of life photovoltaic panel’s treatment establishing both collecting rates and minimum recovery targets. Currently the dominant PV technology uses crystalline silicon (monocrystalline and polycrystalline) as semiconductor, but the thin film photovoltaic modules using cadmium telluride (CdTe), amorphous silicon, Copper Indium Gallium Selenide (CIGS) and Copper Indium Selenide (CIS) are recently getting much more importance. Wastes of PV installations are secondary raw materials which could be treated in order to recover glass and Al, but also other metals such as Cu, Ti, Ag, Te, In, Se, Ga, along with plastic and metallic components of electronic equipment. Many recent efforts were devoted to the treatment of end of life panels, but only two full scale processes were developed for crystalline silicon modules (Deutsche Solar) and CdTe panels (First Solar). Furthermore, recent developments concerned with new technologies designed for treating together more kinds of photovoltaic panels by automated processes. In this work a picture of the PV world in terms of market, typology, waste dynamics and recoverable materials will be given. A description of full scale processes will be reported evidencing products and yields of recovery. A case study of process development for the simultaneous treatment of different kinds of PV panels will be presented. In particular experimental results in lab and pilot scale will be described regarding the development and optimization of a process including both physical pre-treatment and hydrometallurgical recovery of target metal concentrates. The process will be validated in pilot scale within the activities of the Photolife project (LIFE13 ENV/IT/001033) financed by European Community in the LIFE+ program

    Synthesis of cobalt nanoparticles by electrodeposition onto aluminium foils

    Get PDF
    In this contribution a study of electrochemical deposition of cobalt nanoparticles onto aluminium foils is presented. The study is aimed at deriving information required for design and control of cobalt nanoparticles electrodeposition onto aluminium foams employed as catalysts support in ethanol reforming. A thorough experimental analysis was in this perspective conducted to determine the influence of applied potential and amount of electric charge passing thorough the cell (amount of charge), on number density and size of the synthesized nanoparticles. Chronoamperometric tests were for this purpose performed in a three electrode cell to determine the current responses to variations in the selected operating parameters. Mathematical models accounting for charge transfer and diffusion limitations were implemented to attain fitting of the derived data, leading to an estimation of the number density of active sites. Scanning electron microscopy of cathode aluminium foils was performed to validate the predictions of the employed mathematical models and characterize the influence of the considered operating parameters on the size and number density of the electrodeposited nanoparticles

    Hydrogen photo-production by mixotrophic cultivation of chlamydomonas reinhardtii: Interaction between organic carbon and nitrogen

    Get PDF
    Hydrogen photo-production by a wild type and two engineered strains of Chlamydomonas reinhardtii was investigated. Growth rate values and hydrogen yields attained as the concentration of acetate and nitrogen vary were compared. In the analysis of microalgal growth, the interaction between organic carbon (acetate) and nitrogen (nitrate) was investigated by recourse to an experimental factorial design. This analysis evidenced the existence of a statistically significant interaction between organic carbon and nitrate. Hydrogen production was attained by cultivating microalgae previously grown in mixotrophic regime with sulphur deprived medium. The influence of varying the photobioreactor headspace on hydrogen production was investigated. This analysis revealed an increase in the hydrogen produced per unit volume of culture of about one order of magnitude when the headspace volume is modified from 100 to 350 mL. This result provides valuable indications on how to design and operate photobioreactors for hydrogen production optimization and was thoroughly discussed in terms of the metabolic pathways activated by sulphur depletion. ©2014, AIDIC Servizi S.r.l

    Lanthanum biosorption by different Saccharomyces cerevisiae strains

    Get PDF
    Biosorption can be a promising technology in rare earth metal separation and recovery due to the low costs of waste biomasses (used as biosorbents) and the high selectivity exploiting specific interaction between metals and biological active sites. In this work, Saccharomyces cerevisiae biomass was used to recover lanthanum. Biosorption properties of two S. cerevisiae strains, wild type and rim20. mutant, have been tested. Potentiometric titrations were carried out for rim20. mutant strain and compared with wild type. Nature of the main active sites and their concentration were determined by implementing mechanistic models. Carboxylic, amino and phosphoric sites are the main groups present. Higher concentration of negatively charged sites was found in rim20. (0.0024 mol/g) than in wild type (0.0022 mol/g). The rate of lanthanum biosorption process is very fast requiring only 10-20 minutes to reach equilibrium condition for both strains. Then biosorption equilibrium tests were done for both biomasses by testing two equilibrium pH (4.0 and 6.0). Maximum uptake capacities (qmax) were: 70 mg/g and 40 mg/g at pH 4.0 for rim20. and wild type, respectively, and 67 mg/g and 80 mg/g at pH 6.0 for wild type and rim20., respectively. These data evidenced that: rim20. mutant had a higher maximum biosorption capacity with respect to wild type counterpart, and that pH had a relevant effect on lanthanum removal. S. cerevisiae yeast denoted good lanthanum biosorption properties and, between tested strains, rim20. was found to be the most promising for such aim

    Two stage process of microalgae cultivation for starch and carotenoid production

    Get PDF
    Biotechnological processes based on microalgae cultivation are promising for several industrial applications. Microalgae are photoautotrophic microorganisms and can thus grow by using renewable and inexpensive resources as sunlight, inorganic salts, water and CO2. They can store high amounts of neutral lipids (bioil), carbohydrates (mainly starch), carotenoids (such as lutein, astaxanthin, beta-carotene), proteins and other molecules. Productions of lipids and carbohydrates have recently received an increasing interest for biofuel production, while proteins, carotenoids and other minor products are usable as feed additives and nutraceutical compounds. Biofuel production from microalgae is not yet economically sustainable, while there are different industrial plants in the world for the production of high values chemicals as carotenoids. Starch production from microalgae has been investigated mainly for the production of biofuels (e.g. bioethanol) by successive fermentation. However, purified starch can be used for other aims such as the production of bioplastics. Superior plants as corn, potato and wheat are currently used for this purpose. However, there are different environmental and economic issues related to the use of fertile lands and edible plants for these kinds of productions. Microalgae can solve these social and ethical issues because they can grow on nonfertile lands and also reach starch productivity per hectare higher than plants. In this work, the production of starch and carotenoids from Scenedesmus sp. microalgal strain is reported. A two-stage process has been developed in order to reduce operative and investment costs. In the first stage, microalgae are cultivated in photoautotrophic conditions and then, when biomass concentration rises and light becomes a limiting factor for growth, microalgae are transferred to a heterotrophic reactor. In this reactor, microalgae are cultivated by using wastewaters as source of nutrients (mainly organic carbon). Microalgae use organic carbon to synthesize starch and simultaneously reduce the content of pollutants in the wastewater (codepuration). Biomass separated by the culture medium is treated for the extraction of lipids containing different antioxidant carotenoids (such as astaxanthin and lutein) and starch granules as raw material for biopolymers

    Microalgae cultivation for lipids and carbohydrates production

    Get PDF
    Microalgae are photoautotrophic microorganisms that can produce energy both by using sunlight, water and CO2 (phototrophic metabolism) and by using organic sources such as glucose (heterotrophic metabolism). Heterotrophic growth is a key factor in microalgae research, due to its increased productivity and the lower capital and operative costs compared to photoautotrophic growth in photobioreactors. Carbohydrate production from microalgae is usually investigated for the production of biofuels (e.g. bioethanol) by successive fermentation, but also other applications can be envisaged in biopolymers. In this work an increment in carbohydrate purity after lipid extraction was found. Protein hydrolysis for different microalgae strains (Scenedesmus sp. and Chlorella sp.) was investigated. Microalgae were cultivated under photoautotrophic or heterotrophic conditions, collecting biomass at the end of the growth. Biomass samples were dried or freeze dried and used for carbohydrate and lipid extraction tests. Lipid extraction was achieved using different organic solvents (methanol-chloroform and hexane-2propanol). Basic protein hydrolysis has been carried out testing different temperatures and NaOH concentrations values. Lipids were spectrophotometrically quantified, while residual biomass was saccharificated and the total amount of sugars was measured. Significant differences about the purity of extracted carbohydrates were found comparing dried with freeze dried biomass. However, not a very promising purification of carbohydrates was achieved after protein hydrolysis, asking for further analysis. © Copyright 2017, AIDIC Servizi S.r.l

    ntegrated Spatial Assessment: a Multidimensional Approach for Sustainable Planning

    Get PDF
    EnThe paper presents the different steps of a multidimensional methodological approach for supporting the construction of planning choices, starting from the concept of “integrated assessment”. The integration among Problem Structuring Methods, Public Participation, GIS, Multicriteria and Multigroups Decision Support Systems and Geographic Information Systems identifies a decision-making process explored for the transformation strategies definition in the spatial planning field according to sustainable and complex values

    Effect of lipids and carbohydrates extraction on astaxanthin stability in scenedesmus sp

    Get PDF
    Elevated costs of biomass downstream processing represent a severe limit to the industrial development of microalgal production systems. Biorefinery solutions allowing simultaneously deriving biofuels and extracting high value compounds must be explored to enhance economic feasibility. In this work, the possibility to extract carbohydrates, lipids and astaxanthin from a strain of Scenedesmus sp. is investigated. The analysis is mainly focused on analyzing the effect of consolidated procedures of extraction of carbohydrates and lipids on the degradation and recovery of astaxanthin. Microalgae were cultivated till achieving stationary phase and maintained in this phase to enhance lipids and astaxanthin accumulation. The fractions of total lipids, carbohydrates and astaxanthin of the produced biomass were 17 %, 33 % and 0.02 % respectively. No statistically significant difference in the astaxanthin content determined following Soxhlet extraction and a more gentle extraction method (Yuan et al. 2002) was found. The effect of transesterification conditions was also evaluated revealing a scarce degradation of astaxanthin in response to the achievement of elevated temperature, NaOH and dissolved oxygen concentrations. Reductions in astaxanthin content were in contrast obtained in response to the addition of H2SO4. These reductions were proportional to acid sample concentration. However a regeneration of astaxanthin was obtained by NaOH addition indicating reversibility of the degradation process. In accordance with these results, the possibility to perform biomass saccharification for carbohydrate extraction at progressively lower acid concentrations was investigated. Copyright © 2015, AIDIC Servizi S.r.l

    Controls over particle motion and resting times of coarse bed load transport in a glacier‐fed mountain stream

    Get PDF
    Coarse bed load transport is a crucial process in river morphodynamics but is difficult to monitor in mountain streams. Here we present a new sediment transport dataset obtained from two years of field‐based monitoring (2014‐2015) at the Estero Morales, a high‐gradient stream in the central Chilean Andes. This stream features step‐pool bed geometry and a glacier‐fed hydrologic regime characterized by abrupt daily fluctuations in discharge. Bed load was monitored directly using Bunte samplers and by surveying the mobility of PIT (passive integrated transponder) tags. We used the competence method to quantify the effective slope, which is the fraction of the topographical slope responsible for bed load transport. This accounts for only 10% of the topographical slope, confirming that most of the energy is dissipated on macroroughness elements. We used the displacement lengths of PIT tags to analyze displacement lengths and virtual velocity of a wide range of tracer sizes (38‐415 mm). Bed load transport in the Estero Morales show to be size‐selective and the distance between steps influences the displacement lengths of PIT tags. Displacement lengths were also used to derive the statistics of flight distances and resting times. Our results show that the average length of flight scales inversely to grain size. This contradicts Einstein's conjecture about the linear relationship between grain size and intervals between resting periods in a steep step‐pool stream in ordinary flood conditions
    • 

    corecore